Drug Therapy During Pregnancy and the Perinatal Period

Marilynn C. Frederiksen, M.D.
Associate Professor Ob/Gyne
Northwestern University Medical School

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes
- Decrease in albumin concentration
- Enzymatic activity changes
- Increase in GFR
- Gastrointestinal changes

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes

Cardiovascular System Changes

- Plasma volume expansion
 - Begins at 6 8 weeks gestation
 - Volume of 4700 5200 ml peaks at 32 weeks gestation
 - Increase of 1200 1600 ml above nonpregnant women

Cardiovascular System Changes

- Cardiac output increases 30 50%
 - 50% by 8 weeks gestation
- Increase in stroke volume and heart rate
 - Stroke volume in early pregnancy
 - Heart rate in later pregnancy

Regional Blood Flow Changes

- Increased blood flow to uterus 20% of cardiac output at term
- Increased renal blood flow
- Increased skin blood flow
- Increased mammary blood flow
- Decreased skeletal muscle blood flow

HEPATIC BLOOD FLOW IN PREGNANCY

(IN L/min & AS % CARDIAC OUTPUT)

Robson SC, et al. Br J Obstet Gynaecol 1990;97:720-4.

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes

Respiratory Changes

- Compensated respiratory alkalosis
- Lowered P_aCO₂
- pH 7.44

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes
- Decrease in albumin concentration

Albumin Concentration During Pregnancy

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes
- Decrease in albumin concentration
- Enzymatic activity changes

Enzymatic Activity Changes

- Thought to be related to pregnancy hormonal changes
- N-demethylation inhibited by progesterone, not by estrogen

CYP3A4

- Hydroxylation
- Increased activity during pregnancy

CYP2D6 Activity

- Genetic determined polymorphism
- Increased clearance of metoprolol
- Decreased DM/D ratio in homozygous and heterozygous extensive metabolizers
- Increased DM/D ratio in poor metabolizers

Wadelius M, etal. Clin Pharmacol Ther 1997; 62: 400.

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular System
 - Plasma Volume Expansion
 - Increase in Cardiac Output
 - Regional Blood Flow Changes
- Respiratory Changes
- Decrease in Albumin Concentration
- Enzymatic Activity Changes
- Increase in GFR

Renal Clearance Changes

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular System
 - Plasma Volume Expansion
 - Increase in Cardiac Output
 - Regional Blood Flow Changes
- Respiratory Changes
- Decrease in Albumin Concentration
- Enzymatic Activity Changes
- Increase in GFR
- Gastrointestinal Changes

Gastrointestinal Changes

- Decreased gastric acidity
- Delay in gastric emptying
- Increased transit time-progesterone effect

Maternal Physiologic Changes Altering PK of Drugs

Volume Expansion

Caffeine Pharmacokinetics in Pregnancy

Theophylline Volume of Distribution During Pregnancy

Theophylline Volume of Distribution During Pregnancy

Maternal Physiologic Changes Altering PK of Drugs

- Volume expansion
- Protein binding-increase in free fraction of drugs bound to albumin

Theophylline Protein Binding During Pregnancy

Theophylline Protein Binding

Theophylline Protein Binding

Maternal Physiologic Changes Altering PK of Drugs

- Volume expansion
- Protein binding
- Clearance changes

Caffeine Pharmacokinetics in Pregnancy

Theophylline Renal Clearance During Pregnancy

Theophylline Hepatic Clearance During Pregnancy

Measured Theophylline Half-Life

Clearance of Methadone

Carbamazepine Plasma Concentrations During Pregnancy

Tomsom T, et al. Epilepsia 1994; 35:122-30.

Phenytoin Plasma Concentrations in Pregnancy

Tomsom T, et al. Epilepsia 1994; 35:122-30.

CAFFEINE METABOLITE / PARENT DRUG RATIOS IN PREGNANT AND NON-PREGNANT

Bologa M, et al. J Pharmacol Exp Ther 1991;257:735-40.

Pharmacokinetics of Cefuroxime in Pregnancy

Patient Category	V _D (L)	CI(ml/min)	T(1/2)
Pregnant	17.8 <u>+</u> 1.9	282+34*	44 <u>+</u> 5*
At Delivery	19.3 <u>+</u> 3.1	259 <u>+</u> 35*	52 <u>+</u> 10
Postpartum	16.3 <u>+</u> 2.1	198 <u>+</u> 27	58 <u>+</u> 8

^{*}p<0.05 on comparison to PP

Tobramycin Pharmacokinetics

- CI higher in mid-trimester with a corresponding shorter half-life
- CI lower in the third trimester with a corresponding longer half-life
- V_d / kg shows no change

Heparin Pharmacokinetics during Pregnancy

- Shorter time to peak heparin concentration and effect
- Lower peak effect

Enoxaprin Pharmacokinetics during Pregnancy

- T_{max} shows no change
- C_{max} lower during pregnancy
- Cl decreases in late pregnancy
- Lower anti-factor Xa activity
- AUC lower during pregnancy

Maternal Physiologic Changes Altering PK of Drugs

- Volume expansion
- Protein binding
- Clearance changes
- Gastrointestinal changes

Oral AmpicIlin Pharmacokinetics in Pregnancy

Parameter	Pregnant	Nonpregnant
AUC(cm ²)	8.2 <u>+</u> 4.1	12.6 <u>+</u> 4.3*
Peak Level	2.2 <u>+</u> 1.0	3.7 <u>+</u> 1.5*
(µg/ml)		
Bioavailability	45.6 <u>+</u> 20.2	48.1 <u>+</u> 19.3**
(%)		
		*><0.004 **NC

Philipson A. J Inf Dis 1977;136:370-6.

PK of Oral Valacyclovir & Acyclovir

- The pro-drug Valacyclovir converted by first pass metabolism to Acyclovir
- Non-pregnant Valacyclovir gives 3 5 times higher plasma level as Acyclovir
- Valacyclovir PK study in pregnancy gave plasma levels 3 times higher than Acylovir

Kimberlin DF, et al. Amer J Obstet Gynecol 1998; 179: 846

Peripartum Pharmacologic Considerations

- Increased cardiac output
- Blood flow changes
- Uterine contractions
- ? Pharmacodynamic changes

Pharmacokinetics of Cefuroxime in Pregnancy

Patient Category V_D(L) CI(ml/min) T(1/2)

*p<0.05 on comparison to PP

Morphine Pharmacokinetics During Labor

Postpartum PK Considerations

- Increased cardiac output maintained
- GFR increased
- Diuresis
- Breastfeeding
- Great variability

Postpartum Clindamycin Pharmacokinetics

Steen B, et al. Br J Clin Pharmacol 1982; 13: 661.

Postpartum Gentamicin Distribution Volume

Del Priore Obstet Gynecol 1996; 87: 994

Drug Studies for Pregnancy

- Pregnancy Specific Drugs
 - Tocolytic agents
 - Oxytocic agents
 - Eclampsia agents
- Drugs commonly used by women of childbearing potential
 - Antidepressants
 - Asthma drugs

Technical Considerations

- Ethical and IRB concerns
- Serial studies
 - Spanning pregnancy
 - Specific to peripartum period
 - Controls

Study Design

- Use population PK analysis
- Incorporate in vitro protein binding studies
- Use stable isotopes for bioavailability studies
- Use established tracer substances as reference markers

Teratogenesis

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus
- Effects depend upon the development stage when exposed
- Genotype of mother and fetus effect susceptibility

General Principles of Teratology

Teratogens act with specificity

PHOCOMELIA DUE TO THALIDOMIDE

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship

DOSE-RESPONSE RELATIONSHIPS

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus

PHARMACOKINETIC MODEL OF MATERNAL-FETAL TRANSPORT

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus
- Effects depend upon the development stage when exposed

All or Nothing Period

Figure 8-14 Schematic illustration of the critical periods in human development. During the first two weeks of development, the embryo is usually not susceptible to teratogens. During these predifferentiation stages, a

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus
- Effects depend upon the development stage when exposed
- Genotype of mother and fetus effect susceptibility

Phenytoin

- Animal evidence for an arene oxide (epoxide) reactive metabolite
- Genetic susceptibility to the Dilantin Syndrome related to variation in Epoxide hydrolase activity

Identification of the Fetus at Risk

Amniocyte Samples

Genetic Polymorphisms

- Increased risk of clefting in fetuses carrying atypical allele for transforming growth factor >< whose mothers smoke
- Decreased risk for fetal alcohol syndrome in African American women carrying alcohol dehydrogenase isoform 2

Mechanisms of Teratogenesis

- All theoretical
- Most not understood well
- Implications of a genetic component

Thalidomide

- Thalidomide causes DNA oxidation in animals susceptible to teratogenesis
- Pre-treatment with PBN (free radical trapping agent) reduced thalidomide embryopathy
- Suggesting that the mechansim is free radical-mediated oxidative DNA damage

Parman T,et al. Nature Medicine 1999; 5: 582

Evaluation of Drugs in Breast Milk

- Measure the M / P radio
- Estimate breast milk dose
- Estimate infant dose
- Measure blood level in the infant

Drugs in Breast Milk

- Free drug transferred into milk
- Milk concentrations usually less than serum concentrations
- Exchange is bi-directional

KINETIC ANALYSIS OF THEOPHYLLINE PLASMA AND MILK CONCENTRATIONS

KINETIC ANALYSIS OF PREDNISOLONE PLASMA AND MILK CONCENTRATIONS

Factors Effecting the Milk / Plasma Concentration Ratio

- Maternal protein binding
- Protein binding in milk
- Lipid solubility of drug
- Physiochemical factors of drug effecting diffusion

Drugs Contraindicated during Lactation

- Antineoplastics
- Immune suppressants
- Ergot Alkaloids
- Gold
- lodine
- Lithium carbonate
- Radiopharmaceuticals
- Social drugs & drugs of abuse
- Certain antibiotics

General Recommendations

- Drugs considered safe for pregnancy are usually safe during lactation
- Decrease the drug dose to the infant by feeding just prior to a dose
- Infant blood levels can be monitored and should be less than therapeutic